Bounds for nested law invariant coherent risk measures

نویسندگان

  • Linwei Xin
  • Alexander Shapiro
چکیده

With every law invariant coherent risk measure is associated its conditional analogue. In this paper we discuss lower and upper bounds for the corresponding nested (composite) formulations of law invariant coherent risk measures. In particular, we consider the Average Value-at-Risk and comonotonic risk measures. © 2012 Elsevier B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stochastic Orders and Risk Measures: Consistency and Bounds

We investigate the problem of consistency of risk measures with respect to usual stochastic order and convex order. It is shown that under weak regularity conditions risk measures are consistent with these stochastic orders. This result is used to derive bounds for risk measures of portfolios. As a by-product, we extend the characterization of Kusuoka (2001) of coherent, law-invariant risk meas...

متن کامل

Multilevel Optimization Modeling for Risk-Averse Stochastic Programming

Coherent risk measures have become a popular tool for incorporating risk aversion into stochastic optimization models. For dynamic models in which uncertainty is resolved at more than one stage, however, using coherent risk measures within a standard single-level optimization framework becomes problematic. To avoid severe time-consistency difficulties, the current state of the art is to employ ...

متن کامل

Kusuoka Representations of Coherent Risk Measures in Finite Probability Spaces

Kusuoka representations provide an important and useful characterization of law invariant coherent risk measures in atomless probability spaces. However, the applicability of these results is limited by the fact that such representations do not always exist in probability spaces with atoms, such as finite probability spaces. We introduce the class of functionally coherent risk measures, which a...

متن کامل

Central Limit Theorems for Law-Invariant Coherent Risk Measures

In this paper we study the asymptotic properties of the canonical plugin estimates for law-invariant coherent risk measures. Under rather mild conditions not relying on the explicit representation of the risk measure under consideration, we first prove a central limit theorem for independent identically distributed data and then extend it to the case of weakly dependent ones. Finally, a number ...

متن کامل

A risk-averse newsvendor with law invariant coherent measures of risk

For general law invariant coherent measures of risk, we derive an equivalent representation of a risk-averse newsvendor problem as a mean–risk model. We prove that the higher the weight of the risk functional, the smaller the order quantity. Our theoretical results are confirmed by sample-based optimization.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Oper. Res. Lett.

دوره 40  شماره 

صفحات  -

تاریخ انتشار 2012